Подключение люминесцентных ламп: схема и принцип работы - Floresnsk.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Подключение люминесцентных ламп: схема и принцип работы

Устройство и схема включения люминесцентной лампы

Люминесцентные лампы обычно используют для освещения супермаркетов, учебных аудиторий, промышленных объектов, общественных закрытых помещений и прочего. С появлением более современных видов, которые выпускаются со стандартным цоколем E27, их начали использовать и в домашних условиях.

По истечении времени они набирают всё большей популярности. Но схема включения люминесцентных ламп достаточно сложная и требует особых познаний в этой области. Обычно подключают двумя схемами, о которых мы и поговорим дальше. Но сначала следует разобраться в принципе работы и строении такого светильника.

Принцип работы

Давайте разберём, что такое люминесцентная лампа, и как она работает. Представляет из себя стеклянную трубку, которая начинает работать за счёт разряда, который зажигает газы внутри её оболочки. На обоих концах установлен катод и анод, именно между ними и происходит разряд, который вызывает пусковое загорание.

Пары ртути, которые помещают в стеклянный футляр, при разряде начинаю излучать особый невидимый свет, который активизирует работу люминофора и других дополнительных элементов. Именно они и начинают излучать тот свет, который нам необходим.

Принцип работы лампы

Благодаря разным свойствам люминофора, такой светильник излучать большой спектр разнообразных цветов.

Подключаем, используя электромагнитный балласт

Электромагнитный Пускорегулирующий аппарат, сокращённой аббревиатурой для него является ЭмПРА . Также часто называют дросселем. Мощность такого устройства должна быть равной той мощности, которую потребляют лампы при работе. Довольно старая схема, с помощью которой раньше подключали люминесцентные лампы.

Схема с электромагнитным балластом

Принцип работы такого устройства состоит в следующем. После начала подачи тока, он попадает на стартер, после чего на небольшой период времени биметаллические электроды замыкаются. Благодаря этому, весь ток, который появляется в цепи, замыкается между электродами и ограничивается только сопротивлением дросселя.

Таким образом, он возрастает примерно в три-четыре раза, и электроды начинают практически моментально разогреваться.

Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет. После включения, напряжение в схеме будет равно примерно половине от входящего с сети.

Такого показателя мало для создания повторного импульса, из-за чего лампа начинает стабильно работать.

Какими недостатками она обладает:

  1. Сравнивая со схемой, где применяется электронный балласт, расход электроэнергии выше на десять-пятнадцать процентов.
  2. В зависимости от того, сколько лампа уже проработала времени, период запуска будет увеличиваться и может дойти до трёх-четырёх секунд.
  3. Такая схема подключения люминесцентных ламп со временем способствует появлению гудения. Такой звук будет исходить от пластин дросселя.
  4. В процессе работы светильника будет довольно высокий коэффициент пульсации света. Такое явление негативно сказывается на зрении человека, а при продолжительном нахождение действие таких мерцающих лучей может стать причиной ухудшения зрения.
  5. Неспособны работать при низкой температуре. Таким образом, отпадает возможность использовать такие лампы на улице или в неотапливаемых помещениях.

Подключаем лампу, используя электронный балласт

Главным отличием такой системы от электромагнитной то, что напряжение, которое доходит до самой лампы имеет повышенную частоту начиная от 25 и доходит до 140 кГц. Благодаря повышению частоты тока, значительно уменьшается показатель мерцания, и он находит на таком уровне, который уже не является слишком вредным для человеческого глаза.

Подключение с ЭПРА

Система ЭПРА используется специальный автогенератор в своей схеме, такое дополнение включает трансформатор и выходной каскад на всех транзисторах. Зачастую производители указывают схему прямо на задней части блока светильника. Таким образом, у вас сразу есть наглядный пример, как правильно подключить и установить устройство для работы от сети.

Преимуществами стартерной схемы подключения

  • Стартерная система продлевает период работы светильника.
  • Особый принцип работы также продлевает период службы примерно на десять процентов.
  • Благодаря принципу действия, устройство экономит около двадцати-тридцати процентов потребляемой электроэнергии.
  • Облегчённая установка, так как производитель указывает схему, по которой должна происходить установка взятого вами светильника.
  • Во время работы практически полностью отсутствует мерцание и шум от светильника. Такие явления присутствуют, но они незаметны для человека и никак не влияют на здоровье.

Существуют модели, которые поддерживают установку диммера в качестве регулятора. Установка таких приборов несколько отличается от стандартной установки.

Подведём итог

Мы постарались раскрыть вопрос как подключить люминесцентную лампу, показали схемы, с помощью которых происходит подключение люминесцентных ламп. Разобравшись со схемой электромагнитного и электронного балласта, вы можете решить какую лучше использовать именно в вашем случае. Но так как первая имеет ряд значительных недостатков, то скорей всего выбор ляжет именно на электронный балласт.

Причины неисправностей — решение проблем

Схема электронного дросселя была придумана позже, и разрабатывалась специально для того, чтобы убрать все недостатки электромагнитного аналога, с целью максимального повышения качества освещения с помощью люминесцентных ламп.

Установка таких устройств уже не составляет особого труда, как это было раньше. Производители начали указывать схему, по которой производится установка на тыльной стороне прибора что значительно облегчает работу монтажника.

Обзор работоспособных схем подключения люминесцентных ламп

Люминесцентная лампа — источник света, где свечение достигается за счет создания электрического разряда в среде инертного газа и ртутных паров. В результате реакции возникает незаметное глазу ультрафиолетовое свечение, воздействующее на слой люминофора, имеющийся на внутренней поверхности стеклянной колбы. Стандартная схема подключения люминесцентной лампы — прибор с электромагнитным балансом (ЭмПРА).

Устройство люминесцентных ламп

В большинстве лампочек колба выполнена в форме цилиндра. Встречаются более сложные геометрические формы. По торцам лампы имеются электроды, напоминающие по конструкции спирали лампочек накаливания. Электроды изготовлены из вольфрама и припаяны к находящимся с наружной стороны штырькам. На эти штырьки подается напряжение.

Внутри люминесцентной лампы создана газовая среда, которая характеризуется отрицательным сопротивлением, что проявляется при уменьшении напряжении между находящимися напротив друг друга электродами.

В схеме включения лампы используется дроссель (балластник). Его задача — образовать значительный импульс напряжения, за счет которого включится лампочка. В комплект входит стартер, представляющий лампу тлеющего разряда с парой электродов в инертной газовой среде. Один из электродов представляет собой биметаллическую пластину. В выключенном состоянии электроды люминесцентной лампочки разомкнуты.

На рисунке внизу изображена схема работы люминесцентной лампы.

Как работает люминесцентная лампа

Принципы работы люминесцентных источников света основываются на следующих положениях:

  1. На схему направляется напряжение. Однако вначале ток не попадает на лампочку из-за высокого напряжения среды. Ток движется по спиралям диодов, постепенно нагревая их. Ток подается на стартер, где напряжения достаточно для появления тлеющего разряда.
  2. В результате нагрева контактов пускателя током происходит замыкание биметаллической пластины. Металл берет на себя функции проводника, разряд завершается.
  3. Температура в биметаллическом проводнике падает, происходит размыкание контакта в сети. Дроссель создает импульс высокого напряжения в результате самоиндукции. Вследствие этого зажигается люминесцентная лампочка.
  4. Через осветительный прибор идет ток, который уменьшается вдвое, так как напряжение на дросселе сокращается. Его не хватает для еще одного запуска стартера, контакты которого находятся в разомкнутом состоянии при включенной лампочке.

Чтобы составить схему включения двух лампочек, установленных в одном осветительном приборе, необходим общий дроссель. Лампы подключаются последовательно, однако на каждом источнике света имеется параллельный стартер.

Варианты подключений

Рассмотрим разные варианты подключения люминесцентной лампы.

Подключение с использованием электромагнитного баланса (ЭмПРА)

Наиболее распространенный тип подключения люминесцентного источника света — схема со стартером, где используется ЭмПРА. Принцип действия схемы базируется на том, что в результате подключения питания в стартере возникает разряд и происходит замыкание биметаллических электродов.

Ток в электроцепи проводников и стартера ограничивается только внутренним дроссельным сопротивлением. В результате рабочий ток в лампочке увеличивается почти в три раза, происходит стремительный нагрев электродов, а после потери температуры проводниками возникает самоиндукция и зажигание лампы.

  1. В сравнении с другими способами это довольно затратный вариант с точки зрения расхода электроэнергии.
  2. Пуск занимает не меньше 1 – 3 секунд (в зависимости от степени износа источника света).
  3. Невозможность работы при низкой температуре воздуха (например, в условиях неотапливаемого подвального или гаражного помещения).
  4. Имеется стробоскопический эффект мигания лампочки. Этот фактор отрицательно действует на человеческое зрение. Такое освещение нельзя применять в производственных целях, потому что быстро движущиеся предметы (например, заготовка в токарном станке) кажутся неподвижными.
  5. Неприятное гудение дроссельных пластинок. По мере износа устройства звук нарастает.

Схема включения устроена таким образом, что в ней есть один дроссель на две лампочки. Индуктивности дросселя должно хватать на оба источника света. Используются стартеры на 127 Вольт. Для одноламповой схемы они не подходят, там нужны устройства на 220 Вольт.

На картинке внизу показано бездроссельное подключение. Стартер отсутствует. Схема используется в случае перегорания у ламп нитей накала. Используется повышающий трансформатор Т1 и конденсатор С1, ограничивающий ток, идущий через лампочку от 220-вольтной сети.

Следующая схема используется для лампочек с перегоревшими нитями. Однако отсутствует необходимость в повышающем трансформаторе, благодаря чему конструкция устройства становится проще.

Ниже показан способ использования диодного выпрямительного моста, который нивелирует мерцание лампочки.

На рисунке внизу та же методика, но в более сложном исполнении.

Две трубки и два дросселя

Чтобы подключить лампу дневного света, можно использовать последовательное подключение:

  1. Фаза от проводки направляется на вход дросселя.
  2. От дроссельного выхода фаза идет на контакт источника света (1). Со второго контакта направляется на стартер (1).
  3. Со стартера (1) отходит на вторую контактную пару этой же лампочки (1). Оставшийся контакт стыкуют с нулем (N).

Тем же образом подключают вторую трубку. Вначале дроссель, затем один контакт лампочки (2). Второй контакт группы направляется на второй стартер. Выход стартера объединяется со второй парой контактов источника света (2). Оставшийся контакт следует подсоединить к нулю ввода.

Схема подключения двух ламп от одного дросселя

Схема предусматривает наличие двух стартеров и одного дросселя. Наиболее дорогостоящий элемент схемы — дросселя. Более экономный вариант — двухламповый светильник с дросселем. О том, как реализовать схему, рассказывается в видео.

Электронный балласт

Недостатки схемы ЭмПРА вызвали необходимость поиска более оптимального способа подключения. В ходе изысканий был изобретен способ с участием электронного балласта. В данном случае используется не сетевая частота (50 Гц), а высокие частоты (20 – 60 кГц). Удается избавиться от вредного для глаз мигания света.

Внешне электронный балласт — это блок с выведенными наружу клеммами. Внутренняя часть устройства содержит печатную плату, на основе которой можно собрать всю схему. Блок малогабаритен, благодаря чему помещается в корпусе даже небольшого прибора освещения. Включение осуществляется гораздо быстрее по сравнению со стандартом ЭмПРА. Работа устройства не доставляет акустического дискомфорта. Данный способ подключения называется бесстартерным.

Разобраться в принципе функционирования устройства такого типа не сложно, поскольку на его обратной стороне есть схема. На ней показано количество ламп для подключения и поясняющие надписи. Имеется информация о мощности лампочек и других технических параметрах устройства.

Подключение осуществляется следующим образом:

  1. Первый и второй контакт соединяют с парой ламповых контактов.
  2. Третий и четвертый контакты направляют на оставшуюся пару.
  3. На вход подают электропитание.
Читайте также:  Основа и состав эмалевой краски

к содержанию ↑

Использование умножителей напряжения

Данный вариант позволяет подключать люминесцентную лампу без применения электромагнитного баланса. Используется обычно для увеличения периода эксплуатации лампочек. Схема подключения сгоревших ламп дает возможность работать источникам света еще какое-то время при условии, что их мощность не более 20 – 40 Вт. Нити накала допускаются как пригодные для работы, так и перегоревшие. В любом случае выводы нитей необходимо закоротить.

В результате выпрямления напряжение увеличивается в два раза, поэтому лампочка включается почти мгновенно. Конденсаторы C1 и С2 подбираются исходя из рабочего напряжения 600 Вольт. Недостаток конденсаторов состоит в их больших размерах. В качестве конденсаторов С3 и С4 отдают предпочтение слюдяным устройствам на 1000 Вольт.

Люминесцентные лампы несовместимы с постоянным током. Очень скоро ртути в устройстве накапливается столько, что свет становится ощутимо слабее. Чтобы восстановить яркость свечения, меняют полярность путем переворачивания лампочки. Как вариант, можно установить переключатель, чтобы каждый раз не снимать лампу.

Подключение без стартера

Метод с использованием стартера сопряжен с длительным разогревом лампочки. К тому же эту деталь необходимо часто менять. Обойтись без стартера позволяет схема, где подогрев электродов осуществляется с помощью старых трансформаторных обмоток. Трансформатор выступает в роли балласта.

На лампочках, используемых без стартера, должна быть надпись RS (быстрый старт). Источник света с запуском через стартер не подходит, так как его проводники долго греются, а спирали быстро сгорают.

Последовательное подключение двух лампочек

В данном случае необходимо соединить две люминесцентные лампы с одним балластом. Все устройства подключают последовательным образом.

Для проведения электромонтажных работ понадобятся такие детали:

  • индукционный дроссель;
  • стартеры (2 единицы);
  • люминесцентные лампочки.

Подключение выполняется в следующем порядке:

  1. Присоединяем к каждой лампочке стартеры. Соединение выполняем параллельно. Место соединения — штыревой вход на торцах прибора освещения.
  2. Свободные контакты направляем в электрическую сеть. Для соединения используем дроссель.
  3. К контактам источника света присоединяем конденсаторы. Позволят снизить интенсивность помех в сети и компенсировать реактивность мощности.

Обратите внимание! В стандартных бытовых переключателях (особенно в недорогих моделях) нередко залипают контакты из-за слишком высоких стартовых токов. В связи с этим для использования в совокупности с люминесцентными лампами рекомендуется приобретать качественные выключатели.

Замена лампы

Если отсутствует свет и причина проблемы лишь в том, чтобы заменить перегоревшую лампочку, действовать нужно следующим образом:

  1. Разбираем светильник. Делаем это осторожно, чтобы не повредить прибор. Поворачиваем трубку по оси. Направление движения указано на держателях в виде стрелочек.
  2. Когда трубка повернута на 90 градусов, опускаем ее вниз. Контакты должны выйти через отверстия в держателях.
  3. Контакты новой лампочки должны находиться в вертикальной плоскости и попадать в отверстие. Когда лампа установлена, поворачиваем трубку в обратную сторону. Остается лишь включить электропитание и проверить систему на работоспособность.
  4. Завершающее действие — монтаж рассеивающего плафона.

к содержанию ↑

Проверка работоспособности системы

После подключения люминесцентной лампы следует убедиться в ее работоспособности и в исправности пускорегулирующих устройств. Для проведения испытаний понадобится тестер, с помощью которого проверяют катодные нити накала. Допустимый уровень сопротивления — 10 Ом.

Если тестер определил сопротивление как бесконечное, необязательно выбрасывать лампочку. Данный источник света еще сохраняет функциональность, но использовать его нужно в режиме холодного запуска. В обычном состоянии контакты стартера разомкнуты, а его конденсатор не пропускает постоянный ток. Иными словами, прозвон должен показывать очень высокое сопротивление, которое иной раз достигает сотен Ом.

После прикосновения щупами омметра дроссельных выводов сопротивление постепенно снижается до постоянной величины, присущей обмотке (несколько десятков Ом).

Обратите внимание! О неисправном состоянии дросселя говорит перегорание недавно поставленной лампочки.

Достоверно определить межвитковое замыкание в дроссельной обмотке, используя обычный омметр, не получится. Однако если в приборе есть функция замера индуктивности и данные по ЭмПРА, несоответствие значений укажет на наличие проблемы.

Схемы подключения люминесцентных ламп: с дросселем и без дросселя, 2-х и более ламп (Фото & Видео)

Обычные лампы накаливания малоэффективны – они выделяют больше тепла, чем света. Да и срок службы их невелик. Подключение люминесцентных ламп позволяет почти в 3 раза сэкономить на оплате электроэнергии. Плюс подобные источники освещения имеют больший диапазон цветов и менее вредны для глаз. Однако для их монтажа требуется приобретение специальных устройств: дросселей или электронных плат ЭПРА.

Особенности люминесцентных светильников

Устройство люминесцентной лампы

Чтобы понять, каким образом осуществляется подключение люминесцентных ламп, требуется понять принцип их работы. Внешне они выглядят как стеклянные цилиндры, воздух в которых полностью заменен инертным газом, находящимся под небольшим давлением. Здесь же находится небольшое количество паров ртути, способных ускорять ионизацию – движение электронов.

С двух сторон цилиндра расположены электроды. Между ними находится вольфрамовая спираль, покрытая оксидами веществ, способных при пропускании тока и нагреве легко перемещаться на довольно большие расстояния, создавая ультрафиолетовое излучение (УФ).

Но, так как этот вид излучения невидим, его преобразуют с помощью люминофора (особого состава на основе галофосфата кальция, которым покрыты стенки цилиндра), способного поглощать УФ, взамен выделяя видимые лучи света. Именно от вида люминофора зависит цвет освещения.

После включения устройства и перехода в рабочее состояние сила тока в нем может возрастать за счет падения сопротивления газов. Если не ограничить этот процесс, оно может быстро сгореть.

Для снижения силы тока используют дроссели (ограничители) – винтоспиральные катушки индуктивности, дающие дополнительную нагрузку и способные сдвигать фазу переменного тока и поддерживать желаемую мощность на весь период включения. Ограничительные устройства имеют и иное название: балласты или ПРА (пускорегулирующие аппараты).

Электронный пускорегулирующий аппарат

Более совершенными видами балласта являются электронные механизмы (ЭПРА), принцип работы которых будет описан в следующей главе. Для запуска разряда используется пусковое устройство, называемоестартером.

Принцип действия

Принцип действия люминесцентных ламп

Опишем кратко схему взаимодействия стартера, балласта и светильника:

  1. При подаче питания ток, проходя через ПРА, проходит через контакты стартера по вольфрамовым спиралям, раскаляя их и далее уходит в сторону нуля
  2. Стартер оснащается парой контактов: подвижным и неподвижным. При поступлении тока подвижный контакт (биметаллический), нагреваясь, изменяет свою форму и соединяется с первым
  3. При этом сила тока тут же значительно увеличивается до предела, ограничиваемого дросселем. Происходит разогревание электродов
  4. Пластина стартера, напротив, начинает остывать и рассоединяет контакты. В этот момент происходит резкий скачек напряжения и пробивка электронами газа. При превращении ртути в пар источник света переходит в рабочий режим
  5. Стартер в процессе уже не участвует – его контакты разомкнуты.

Основные этапы подключения

Схема подключения одного источника освещения к одному дросселю

Схема подключения люминесцентной лампы с дросселем довольно проста:

  1. Включение в схему компенсирующего конденсатора позволяет снизить потери энергии и сэкономить ее потребление. В принципе, система будет работать и без него, но с большими затратами электроэнергии
  2. Напряжение должно проходить последовательно по всем точкам, начиная с конденсатора
  3. Далее в систему включается ПРА. Для получения ровного свечения его параметры должны идеально соответствовать мощности лампы
  4. Дроссель подключается к источнику света последовательно
  5. После выхода его из катушки следует подсоединить клеммы стартера
  6. Монтируем к нему второй сетевой контакт

К сожалению, стартер – не слишком надежное устройство. Плюс при работе лампа может мерцать, негативно влияя на зрение. В принципе, возможно и подключение без него. Заменить эту деталь можно подпружинной кнопкой-выключателем.

Монтаж двух ламп

Какое бы количество источников света не требовалось включить в осветительную систему, все они подключаются последовательно. Для запуска двух ламп потребуется соответственно два стартера. Их подсоединяют параллельно.

Итак, опишем процесс подключения сразу 2 люминесцентных ламп:

  1. Фаза вначале должна подходить ко входу дросселя
  2. От него она должна поступать к первой лампе
  3. Затем направляться к первому стартеру
  4. Далее переходить на вторую контактную пару этого же источника света
  5. Выходящий контакт соединяют с нулем
  6. Точно в такой же последовательности подсоединяют вторую трубу. Первым – ПРА. Затем контакт второго источника света и т.д.

Если вы поняли принцип этой схемы, то легко сможете этим же способом подключить 3 или 4 люминесцентных лампы.

Пара ламп и один дроссель

Схема с одним дросселем

Стартеров здесь понадобится два, а вот дорогостоящий ПРА вполне можно использовать один. Схема подключения в этом случае будет чуть сложней:

  1. Подсоединяем провод от держателя стартера к одному из разъемов источника света
  2. Второй провод (он будет подлиней) должен проходить от второго держателя стартера к другому концу источника света (лампе). Обратите внимание, что гнезд у него с обеих сторон два. Оба провода должны попасть в параллельные (одинаковые) гнезда, расположенные с одной стороны
  3. Берем провод и вставляем его вначале в свободное гнездо первой, а затем второй лампы
  4. Во второе гнездо первой подсоединяем провод с подключенной к нему розеткой
  5. Раздвоенный второй конец этого провода подключаем к дросселю
  6. Осталось подключить к следующему стартеру второй источник света. Подсоединяем провод в свободное отверстие гнезда второй лампы
  7. Последним проводом соединяем противоположную сторону второго источника света к дросселю

Подключение без дросселя

В данном подключении дроссель не используется

Этот способ используется в основном в старых лампах при выходе из строя балласта. Сделать это можно посредством использования постоянного тока, номинал которого выше обычного. То есть напряжение в момент пуска следует повысить. Сила этого напряжения подбирается исходя из характеристик как сети, так и самого источника света.

Для подключения люминесцентной лампы без дросселя требуется подсоединение диодного моста (или пары диодов). Контакты замыкаются с обеих сторон попарно. На одну сторону источника освещения должен приходиться плюс, на другую минус.

Подобную схему можно использовать даже при сгоревшей нити накаливания. Ведь цилиндр с газом при этом способе будет подпитываться за счет постоянного напряжения. Учтите лишь, что данный способ можно использовать на короткий период – со временем труба быстро потемнеет, а затем из-за выгорания люминофора вовсе перестанет излучать свет.

Подключение ЭПРА

Подсоединение ЭПРА (электронного пускового механизма)

Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.

В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.

Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:

  • источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
  • с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня

Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:

  1. Разобрать старую схему, удалив из нее дроссель, стартер, а также конденсаты. Внутри должны остаться лишь источник света и провода
  2. Прикрепляем подобранный по мощности ЭПРА к корпусу саморезами. Если ламп две, то мощность электронного механизма должна быть выше в 2 раза
  3. Соединяем его проводами с гнездами ламп
  4. Если сборка произведена правильно, оба источника света должны засветиться одновременно, ровным ярким светом. Гудения, естественно, быть уже не должно.
Читайте также:  Какой линолеум лучше выбрать для дома

Достоинства и недостатки люминесцентных источников света

Использование ламп для тепличного выращивания растений

  • Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
  • Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.
  • Необходимость подключения дополнительных устройств (стартеров и дросселей)
  • Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
  • Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
  • На силу света в таких источниках способна влиять температура окружающей среды
  • Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
  • значительная пульсация света, что может сказаться отрицательно на зрении
  • Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных

Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.

Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.

Сравнение параметров разных источников освещения

Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.

Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.

Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:

ВИДЕО: Как подключить люминесцентную лампу

Схемы подключения люминесцентных ламп: с дросселем и без дросселя, 2-х и более ламп (Фото & Видео)

Для нас очень важна обратная связь с нашими читателями. Если Вы не согласны с данными оценками, оставьте свой рейтинг в комментариях с аргументацией Вашего выбора. Благодарим за ваше участие. Ваше мнение будет полезно другим пользователям.

Принцип работы люминесцентной лампы и устройство прибора

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

Схема подключения лампы с дросселем и стартером

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

Что такое и какие бывают люминесцентные лампы дневного света

Что такое люминесцентные лампы

Вся планета давно уже обеспокоена вопросом экономии электроэнергии. Обычные лампы накаливания уже можно признать морально устаревшими. Низкий КПД, а об энергосбережении вопрос можно и не поднимать. При их работе экономии электроэнергии просто не существует. Поэтому одним из вариантом будут газоразрядные излучатели. Они созданы в России под руководством С.И. Вавилова в 1936 году.

Лампы люминесцентные (газоразрядные) — это колба с парой электродов. Им можно придать любую форму. При подаче напряжения между электродами начинается эмиссия электронов (тлеющий разряд), создающая излучение света. Свет этот мы не можем видеть. Спектр в ультрафиолетовом диапазоне. Чтобы мы могли получить видимый свет (длина волны должна быть в пределах видимого нами спектра) внутреннюю поверхность колбы покрывается веществом, которое может излучать видимый свет – люминофором. При разряде люминофор начинает светиться. Герметичная колба заполнена инертным газом и парами ртути. Ее наличие необходимо для тлеющего разряда. Жидкий металл его усиливает. Инертный газ безвреден для человека, так как он не вступает ни в какие химические реакции. Но, ртуть – метал опасный для человека. Поэтому возникают проблемы утилизации и вопросы о том, как избежать ртутного заражения.

Принцип работы и устойство ламп

Показатели спектральной цветопередачи существенно выше, чем у раскаленной вольфрамовой нити. Их свет дает натуральные оттенки, для глаз такое освещение более полезно, а глаза устают меньше.

Условно выделено три типа газоразрядных источников света – низкого (не более 0,01 МПа), высокого (0,1 МПа до 1 МПа) и сверхвысокого давления (более 1МПа). Они имеют значительные различия в конструкции.

При подаче напряжения электроды (катоды) разогреваются, между ними возникает тлеющий разряд, который вызывает свечение люминофорного покрытия.

Для создание ультрафиолетового излучения применяется газоразрядные лампы. Их отличие состоит лишь в том, что применяется кварцевое стекло для изготовления колбы. Люминофорное покрытие отсутствует.

Обычное стекло его не пропускает. Такие приборы применяются часто в соляриях и для обеззараживания помещений.

Как подключить люминесцентную лампу

В традиционной схеме всего три элемента:

Дроссель представляет собой обычную катушку индуктивности с наборным сердечником из пластин. Стартер – устройство, состоящее из малогабаритной неоновой лампы и конденсатора. Внутри ее колбы находятся подвижные биметаллические контакты. В момент подачи напряжения между биметаллическими контактами стартера возникает разряд, его электроды изменяют свою геометрию и замыкают цепь. Дроссель играет роль балласта. Электроды источника света прогреваются, стартер отключается, возникает тлеющий разряд, вызывающий свечение люминофора, нанесенного на внутреннюю сторону колбы. Согласно ГОСТам, схема должна включиться в течение максимум 10 секунд.

Для включения двух ламп не нужно дублировать схему. Можно использовать только один дроссель.

Обе этих схемы можно дополнить конденсатором, включенным параллельно к источнику питания. Это улучшит режим. В первой схеме параметры мощности источника света, дросселя, стартера должны совпадать. Во второй схеме параметры дросселя должны быть равны сумме мощностей двух ламп, а параметры стартеров должны соответствовать мощности каждой из ламп.

Читайте также:  Применение садового райдера

Выбор конденсатора осуществляется исходя из номинала мощности ЛЛ. Конденсатор в таком источнике света служит для компенсации реактивной мощности, и при отсутствии её учёта как бы не обязателен. Есть — хорошо, нет — ничего страшного. Не редко, при перепадах напряжения или некачественном конденсаторе происходит его возгорание.

Люминесцентные лампы (ЛЛ)

Мощность лампы, Вт

Параллельно включенный конденсатор 250 В, мкФ

Существует и так называемая схема холодного старта. Она позволяет запустить даже лампу со сгоревшими электродами. Кроме того, схема с умножителем напряжения увеличивает период эксплуатации источника света.

Этот вариант несколько сложнее и применяется при мощностях не более 40 Вт. Здесь лампа питается постоянным током и включение происходит практически мгновенно, так как выпрямленное напряжение суммируется. Довольно быстро ртуть будет скапливаться в районе одного из электродов, при этом яркость падает. В этом случае достаточно поменять полярность. Конденсаторы С1 и С2 должны иметь напряжение порядка 900 В. А С3 и С4 – от 1000 В. Обычно применяют слюдяные конденсаторы. На электроды прикладывается напряжение порядка 900 Вольт. Со временем люминофор конечно же выгорит, и лампа будет подлежать замене и утилизации. Эта хороша тем, что позволят применять лампы с электродами, находящимися в обрыве.

Существуют и полностью готовые решения – ЭПРА. Это полностью полупроводниковое устройство, которое пришло на смену электромагнитной классике.

Собрать готовый светильник с ним очень просто.

На входные клеммы устройства подается напряжение питания. Выходные клеммы предназначены для непосредственного подключения лампы.

Достоинства электронного пуско-регулирующего аппарата:

  • Простота подключения.
  • Повышает срок эксплуатации лампы.
  • Снижает время включения лампы.
  • Отсутствует мерцание при запуске.
  • Долговечность.

Подробнее о ЭПРА вы можите прочитать — тут

Осветители на лампах высокого давления имеют такую схему.

Дроссель выполняет роль балластного устройства. Предохранитель защищает лампу и дроссель от скачка напряжения.

Как проверить люминесцентную лампу

Неисправности могут визуально проявляться таким образом.

  • Лампа не зажигается совсем.
  • Наблюдается мерцание при работе.
  • Мерцание перед выходом на рабочий режим.
  • Гудение.
  • Мерцание при горении.

Во время эксплуатации газоразрядные лампы могу потерять работоспособность. При сборке осветительного прибора на основе люминесцентных ламп иногда источник света желательно проверить до установки.

Первоначально требуется провести осмотр на наличие повреждений. Если колба имеет повреждения, то использовать такую лампу нельзя. То же самое касается и сеточки трещин. Такая колба во время работы однозначно разрушится, а ртуть может привести к заражению помещения.

Вторым моментом следует осмотреть колбу в районе расположения электродов, там не должно быть потемнений на внутренней стороне.

Обратимся к устройству самой лампы. С двух сторон у нее размещены электроды, они делаются из вольфрама, так как это тугоплавкий металл. Для увеличения срока службы эти электроды покрываются щелочным соединением. Это способствует облегчению зажигания тлеющего разряда и защищает электроды. Часты включения и выключения влекут за собой частое нагревание и остывание защитного покрытия. Таким образом со временем оно просто отслаивается, образуются незащищенные участки на вольфрамовом электроде. В момент запуска вольфрамовая нить разогревается неравномерно. Открытые участки разогреваются сильнее происходит сначала точечное выгорание, со временем произойдёт разрушение электрода. О начале выгорания и свидетельствует такое потемнение. Это — щелочные соединения, которые осаждаются на люминофорном слое. Но даже если электрод находится в обрыве, а колба лампы цела и люминофор не обсыпался, то лампу еще возможно какое-то время использовать. При этом применяется схема умножителя.

Если на контактах электродной нити, либо по краям самой газоразрядной лампы видно оранжевое свечение, при этом освещение не включается, то это говорит о разгерметизации колбы, внутри уже присутствует воздух.

Довольно часто причина отсутствия освещения банальна: отсутствие контакта. Дело в том, что контактные пластины и контактные штырьки для подключения электродов окисляются. Иногда они могут просто быть ослаблены. Восстанавливается это достаточно быстро, их следует почистить при помощи мелкозернистой наждачки, либо жидкости на основе спирта. Отлично подходит для этих целей изопропиловый спирт (он же изопропанол). Также не произойдет розжига при низких температурах (менее минус 50 градусов Цельсия) и при скачках напряжения свыше семи процентов.

Целостность электродов можно проверить еще и мультиметром. Возможно использовать режим прозвонки (значок диода на приборе). В случае целостности контактов, Вы услышите писк, как при замыкании щупов. Можно воспользоваться режимом омметра, прибор должен показать сопротивление 3-16 Ом. В случае индикации бесконечного сопротивления электрод находится в обрыве и в традиционных схемах (также как и с ЭПРА) использование принципиально невозможно.

При использовании классической схемы со стартером и дросселем, лампу, у которой хотя бы один из электродов находится в обрыве зажечь не удастся. Если балластный дроссель находится в обрыве, то лампа также не загорится. Исправный дроссель должен обладать сопротивлением 60 Ом, плюс-минус 5 Ом. Вышедший из строя дроссель можно определить «на глаз» по косвенным признакам: характерный запах, пятна.

Типы цоколей ламп дневного света

Вне зависимости от конструкции лампы, она в любом случае будет оборудована цокольными элементами. Это обязательный элемент. Они служат для подключения и подачи электрического тока на электроды осветительного прибора. Цоколь предназначен для надежного крепления и обеспечения контакта. При покупке обязательно надо обратить внимание на тип цоколя, в противном случае просто не удастся установить лампу. Цоколь и патрон обязательно должны взаимно соответствовать.

Условно их можно подразделить на две большие категории: резьбовые и штыревые. В последнее время резьбовые имеют более широкое распространение. Их можно назвать классикой. В быту они используются без каких-либо переделок патрона, т.е. люминесцентную лампу с цоколем Е14 и Е27 можно применить вместо обычных ламп накаливания. Основными характеристиками являются диаметр и расстояние между витками.

Штыревые цоколи люминесцентных ламп расположены как правило у торцов источника света. Это могут быть и прямые, и U-образные лампы.

Маркировка и технические характеристики

Напряжение в сети питания переменного тока в разных странах различается. К примеру, в странах бывшего СССР принято значение 220 Вольт, в США, Японии и других странах – 110 Вольт.

У нас наиболее востребованы осветительные приборы с цоколями Е14, Е27, Е40. Обычно маркировка осуществляется в формате Ехх. Буква «Е» — общепринятая, от фамилии изобретателя Эдисона (Edison). А хх – это цифры, означающие диаметр в мм.

Е14 – самый маленький из упомянутых. Обычно для небольших лампочек в виде свечи. Может применяться для подсветки и маленьких светильников.

Е27 – основной для нашей страны. Сейчас он применяется и для ламп накаливания, энергосберегающих и светодиодных.

Е40 – в быту практически не встречаются и предназначены для мощных осветителей. В основном он принят на производственных предприятиях, где света должно быть много. Или, например, уличное освещение.

Есть еще и Е10, но он применяется для низковольтных ламп накаливания, например может применяться в елочных гирляндах. Лампы с таким цоколем не применяются для освещения, только для декоративных целей.

На лампах со штыревым цоколем маркировка в обязательном порядке содержит латинскую букву G. После идут цифры, которые означают дистанцию между центрами штырьков в миллиметрах. Перед цифрами может дополнительно размещаться одна из букв U, X, Y, Z.

Существует российская и международная маркировка осветительных приборов.

Последние три цифры маркировки характеризуют световой поток, который дает конкретный осветитель: на картинке 8 – это цветопередача, 40 (две последние) – это цветовая температура. В данном случае индекс цветопередачи равен 80Ra, а цветовая температура 4000 К. Здесь значение 840 можно трактовать как лампа белого света для рабочих поверхностей с очень хорошей цветопередачей и светотдачей. Такие применяются в жилых помещениях и для работы. Цветовую температуру лучше выбирать не менее 4000 К. Обычный дневной свет имеет этот показатель в диапазоне от 5000 К до 6500 К. При цветовой температуре в 2700 К предметы, на которые падает свет, визуально могут иметь коричневый оттенок. Чем больше первая цифра, тем лучше и комфортнее глазу.

Российская маркировка представлена в рисунке ниже.

Спектр излучения люминофора для люминесцентных ламп

Человек способен видеть излучение в диапазоне от 380 до 780 нм. Свет – это энергия в различных диапазонах излучения. Солнечный свет включает в себя не только видимый человеком диапазон. Имеются еще инфракрасный и ультрафиолетовый. Обычно источники света в жилых и рабочих помещениях снабжены УФ-фильтрами. Такое решение снижает вредное для кожи излучение.

Существуют и специальные лампы для бактерицидной обработки помещения, так как раз и необходимо отсутствие УФ-фильтра.

Обычно люминесцентные лампы дают световой поток спектрально приближенный к обычному солнечному свету.

Левая часть изображение показывает спектр солнечного света. Правая – спектр хорошей лампы дневного света. Можно увидеть, что спектрально они похожи. Свет солнца имеет более ровную характеристику. Свет ЛЛ имеет ярко выраженный пик в зеленой части, и резкий спад в красной части. Спектр свечения многих люминесцентных ламп захватывает весь видимый диапазон. Дорогие лампы захватывают часть инфракрасного и ультрафиолетового диапазона. Чем ближе искусственный свет по спектру к естественному, тем более он благоприятен для человека. Соответственно, показатели жизнедеятельности будут выше. Это уже доказано физиологическими исследованиями. Поэтому рекомендуется для рабочих мест и в жилых помещениях применять источники света спектр которых приближен к солнечному. В некоторых случаях люминесцентные источники света будут более предпочтительны даже в сравнении со светодиодными.

Какую люминесцентную лампу стоит выбрать

Сейчас в продаже много разных источников света. Продуманное расположение источников света создает чувство комфорта. Сложность выбора состоит в том, необходимо рассматривать не только мощностные параметры, но и цветопередачу, спектральный диапазон. С яркостью все понятно, чем больше мощность, тем больше яркость. В этом случае все зависит от линейных размеров освещаемого помещения. Если их сравнить с обычными лампами накаливания, то при равной мощности ККЛ (компактная люминесцентная лампа) имеет яркость в среднем в пять раз выше.

Цветовая температура должна коррелировать с конкретными нуждами. Цветовая температура — Важный параметр. 2700 К – это тепло-желтый свет, 4200 – обычный белый, а 6400К – холодный синий. Для глаз наиболее комфортно от 4000 К до 5000К. Существуют также осветители с различным окрасом люминофорного слоя. Это уже для дизайнерского креатива в оформлении помещений.

Сейчас много разных форм и конфигураций люминесцентных источников света для создания оформления. Теоретически возможно создать любую форму для дизайнерского проекта.

Преимущества и недостатки

Изучив материалы по газоразрядным осветительным приборам, можно понять их особенности. Такие лампы используются несколько десятилетий, можно сказать, что они уже достигли своего предела совершенствования и создать источник света, который будет еще лучше, на этих же физических принципах работы, уже невозможно.

Мы надеемся, что статья была полезна читателям.

Ссылка на основную публикацию
Adblock
detector