Силикатный кирпич: состав, теплопроводность, плотность - Floresnsk.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Силикатный кирпич: состав, теплопроводность, плотность

Состав силикатного кирпича

В настоящее время силикатный кирпич является одним из самых востребованных стройматериалов, несмотря на древнюю технологию изготовления и примитивный набор сырья. С другой стороны, эти приемы изготовления делают его простым, а значит, дешевым в производстве. В современном жилищном фонде, построенном за последние пятьдесят лет, примерно 4/5 всех построек выполнены из стройматериала на основе силиката.

Исходные компоненты для производства

Современный состав силикатного кирпича отличается от используемого в прошлом веке ненамного:

  • Кварцевый песок от 80-90% состава;
  • Известь гашенная гидратированная 10-15%;
  • Вода очищенная, остаток, необходимый для смачивания и увлажнения формовочной смеси до пластичного состояния.

Все компоненты предварительно тщательно очищаются от примесей, перемешиваются и прессуются в сырую заготовку будущего блока. Далее, следует обработка сырца в автоклаве при повышенном давлении и температуре, в результате чего в растворе образуются прочные и устойчивые силикатокальциевые соединения, делают материал нерастворимым в воде, обладают высокой механической прочностью и низким коэффициентом теплового расширения. Примерно через сутки блок на основе силиката готов к использованию.

В современном производстве силикатокамня используются несколько разновидностей добавок, которые делают больше текучесть и пластичность формовочного раствора, выдавливающие воздух из пор и предупреждающие расслоение массы в процессе автоклавной обработки.

Теплозащитные и прочностные свойства материала

Учитывая климатические условия, в которых предполагается строительство из силикатного материала, серьезной проблемой остается повышение морозостойкости построек из силиката. Обычный состав обеспечивает индекс морозостойкости до 30 циклов заморозки-разморозки стройматериала. Специальные полимерные добавки позволяют увеличить показатель до 50 единиц.

Применение специальных растворов минеральных красителей, устойчивых к щелочной среде извести, позволяет создать и расширить ассортимент цветного лицевого силикатного кирпича. Краситель используют даже для получения белых блоков. Благодаря большому содержанию в растворе извести и белого кварцевого песка естественный цвет неокрашенного кирпича очень близок к белому. Но с течением времени адсорбированная пыль и вымытая из поверхностного слоя известь придают наружной поверхности силиката серый оттенок. Поэтому для сохранения естественного белого оттенка в состав и поверхностные слои добавляют окись титана.

В дорогих сортах материала на основе силиката известных европейских брендов для получения абсолютно стойких к солнечному свету и невыцветающих составов используют добавки в раствор:

  • До 5 кг портландцемента на м 3 формовочной смеси;
  • До 5 кг белого глиноземного цемента на м 3 смеси;
  • от 0,5 до 10 кг порошковых полимеров на основе метакрилатов и винилароматических спиртов.

Приведенные добавки позволяют в течение десятков лет сохранять насыщенность и глубину исходного цвета облицовочного материала.

Второй, не менее важной характеристикой силикатного кирпича является его способность сохранять тепло в доме. Обычный силикатный кирпич обладает относительно высоким коэффициентом теплопроводности, причем, чем выше плотность силикатного кирпича и прочность, тем «холоднее» становится материал. Величина коэффициента теплопроводности для рядового кирпича составляет 0,55 Вт/ М*С о , но в кирпичной кладке показатель снижается примерно на 29-22% из-за высокого содержания цемента в швах.

Важным условием обеспечения надлежащих условий проживания в зданиях из силикатного кирпича является высокий коэффициент паропроницаемости, его значение находится в пределах 10-12 мг/м*ч*Па. Это позволяет кладке «дышать», создавая микроклимат, сравнимый с атмосферой в помещениях из дерева.

Уменьшить теплопроводность силикатного кирпича возможно несколькими путями:

Плотностью силикатного кирпича определяется его прочность, удельный вес и стойкость к воздействию внешней среды. Чем плотнее кирпич, тем выше его морозостойкость и меньше коэффициент водопоглощения. В среднем сухой силикатный материал с классом средней плотности 1,6-1,8 может поглотить до 10-14% воды, при этом его способность удерживать тепло может снизиться на 30%.

Прочность и коэффициент водопоглощения такого материла значительно ниже стандартного образца, но для лицевых поверхностей это не столь важно, как для кладки несущих конструкций.

Особенности состава для производства силикатного кирпича

В зависимости от размера зерна используемого кварцевого песка можно достаточно гибко подбирать и регулировать основные прочностные характеристики силикатного кирпича. Чем мельче фракция, тем прочнее и плотнее получается тело силикатного кирпича. Но абсолютно не проницаемый материал не годится для строительства – он просто не будет впитывать в необходимом количестве раствор и вяжущие материалы кладки. Поэтому крупные фракции песка также добавляются в исходную смесь в определенной пропорции, вследствие чего образуются приповерхностные поры и цементирующие зерна силикатов кальция.

Перед использованием песок очищают от вредных примесей, особенно таких, как глина и слюда. Глиняных конкреций в подготовленном песке должно быть не более 10 кг на каждые 1000 кг или 0,5 м 3 готовой формовочной смеси, а слюды – не более 5 кг на каждый м 3 смеси. Особый контроль осуществляется за чистотой исходного материала от сернистых или органических включений, из-за чего активность образования прочной связки кирпича резко уменьшается.

Отдельно пунктом производства качественных силикатных материалов осуществляется контроль над чистотой извести. Известь может использоваться негашеной или частично гашеной, но чаще всего в виде гидратной гашеной формы. Особо уделяется внимание содержанию окиси магния, ее не должно быть более 5 кг на 1/2 м 3 подготовленной извести.

Для увеличения морозостойкости в раствор добавляют продукты переработки алюмощелочных отходов металлургической промышленности. Добавление в раствор 70 кг на каждый м 3 или 1600 кг исходной смеси позволяет поднять индекс морозостойкости на 30-35%. Кроме того, добавка уменьшает коэффициент теплопроводности материала на 10-12%. Зачастую модифицированные варианты подобных веществ могут добавляться в раствор кладки для силикатного кирпича, в результате чего снижается коэффициент теплопроводности всей кирпичной кладки.

Удельный вес силикатного кирпича

Существующим стандартом силикатный кирпич разбит на семь основных классов по средней плотности материала. Самые легкие сорта силикатного кирпича имеют удельный вес до 1000 кг на м 3 , самый тяжелый – класса 2,2 имеет вес в 2200 кг в м 3 . От плотности зависит прочность и марка силикатного кирпича. Более тяжелые сорта кирпича используют для несущих конструкций высотных зданий, более легкие – для кладки стен. Самые легкие, особенно с искусственными пустотами, применяются в качестве теплоизолирующего и облицовочного материала в кладке основных стен.

Читайте также:  Узлы крыши из битумной черепицы

Заключение

Силикатный кирпич еще долго останется фаворитом среди строительных материалов, особенно в частном домостроении, заменить его аналогичным по свойствам и долговечности кирпичом или материалом пока нечем. Тем более что технологии производства развиваются и позволяют в будущем получить силикатные материалы более дешевые и качественные.

Теплопроводность кирпича, сравнение кирпича по теплопроводности

Рассмотрена теплопроводность кирпича различных видов (силикатного, керамического, облицовочного, огнеупорного). Выполнено сравнение кирпича по теплопроводности, представлены коэффициенты теплопроводности огнеупорного кирпича при различной температуре — от 20 до 1700°С.

Теплопроводность кирпича существенно зависит от его плотности и конфигурации пустот. Кирпичи с меньшей плотностью имеют теплопроводность ниже, чем с высокой. Например, пеношамотный, диатомитовый и изоляционный кирпичи с плотностью 500…600 кг/м 3 обладают низким значением коэффициента теплопроводности, который находится в диапазоне 0,1…0,14 Вт/(м·град).

Кирпич в зависимости от состава можно разделить на два основных типа: керамический (или красный) и силикатный (или белый). Значение коэффициента теплопроводности кирпича указанных типов может существенно отличатся.

Керамический кирпич. Производится из высококачественной красной глины, составляющей около 85-95% его состава, а также других компонентов. Такой кирпич изготавливают путем формовки, сушки и обжига, при температуре около 1000 градусов Цельсия. Теплопроводность керамического кирпича различной плотности составляет величину 0,4…0,9 Вт/(м·град).

По сфере применения керамический кирпич подразделяется на рядовой строительный, огнеупорный и лицевой облицовочный. Лицевой декоративный (облицовочный) кирпич имеет ровную поверхность и однородный цвет и применяется для облицовки зданий снаружи. Теплопроводность облицовочного кирпича равна 0,37…0,93 Вт/(м·град).

Силикатный кирпич. Изготавливается из очищенного песка и отличается от керамического составом, цветом и теплопроводностью. Теплопроводность силикатного кирпича немного выше и находится в интервале от 0,4 до 1,3 Вт/(м·град).

Сравнение кирпича по теплопроводности при 15…25°С

КирпичПлотность, кг/м 3Теплопроводность, Вт/(м·град)
Пеношамотный6000,1
Диатомитовый5500,12
Изоляционный5000,14
Кремнеземный0,15
Трепельный700…13000,27
Облицовочный1200…18000,37…0,93
Силикатный щелевой0,4
Керамический красный пористый15000,44
Керамический пустотелый0,44…0,47
Силикатный1000…22000,5…1,3
Шлаковый1100…14000,6
Керамический красный плотный1400…26000,67…0,8
Силикатный с тех. пустотами0,7
Клинкерный полнотелый1800…22000,8…1,6
Шамотный18500,85
Динасовый1900…22000,9…0,94
Хромитовый3000…42001,21…1,29
Хромомагнезитовый2750…28501,95
Термостойкий хромомагнезитовый2700…38004,1
Магнезитовый2600…32004,7…5,1
Карборундовый1000…130011…18

Теплопроводность кирпича также зависит от его структуры и формы:

  • Пустотелый кирпич — выполнен с пустотами, сквозными или глухими и имеет меньшую теплопроводность в сравнении с полнотелым изделием. Теплопроводность пустотелого кирпича составляет от 0,4 до 0,7 Вт/(м·град).
  • Полнотелый — используется, как правило, при основном строительстве несущих стен и конструкций и имеет большую плотность. Полнотелый силикатный и керамический кирпич в 1,5-2 раза лучше проводит тепло, чем пустотелый.

Печной или огнеупорный кирпич. Изготавливается для эксплуатации в агрессивной среде, применяется для кладки печей, каминов или теплоизоляции помещений, которые находятся под воздействием высоких температур. Огнеупорный кирпич обладает хорошей жаростойкостью и может применяться при температуре до 1700°С.

Теплопроводность огнеупорного кирпича при высоких температурах увеличивается и может достигать значения 6,5…7,5 Вт/(м·град). Более низкой теплопроводностью в сравнении с другими огнеупорами отличается пеношамотный и диатомитовый кирпич. Теплопроводность такого кирпича при максимальной температуре применения (850…1300°С) составляет всего 0,25…0,3 Вт/(м·град). Следует отметить, что теплопроводность шамотного кирпича, который традиционно применяется для кладки печей, — выше и равна 1,44 Вт/(м·град) при 1000°С.

Теплопроводность огнеупорного кирпича в зависимости от температуры

КирпичПлотность, кг/м 3Теплопроводность, Вт/(м·град) при температуре, °С
2010030050080010001700
Диатомитовый5500,120,140,180,230,3
Динасовый19000,910,971,111,251,461,62,1
Магнезитовый27005,15,155,455,756,26,57,55
Хромитовый30001,211,241,311,381,481,551,8
Пеношамотный6000,10,110,140,170,220,25
Шамотный18500,850,91,021,141,321,44
  1. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина и др.; под ред. И. С. Григорьева — М.: Энергоатомиздат, 1991 — 1232 с.
  2. В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.
  3. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с. строительной физики, 1969 — 142 с.
  4. Михеев М. А., Михеева И. М. Основы теплопередачи. М.: Энергия, 1977 — 344 с.
  5. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  6. Х. Уонг. Основные формулы и данные по теплообмену для инженеров. Справочник. М.: Атомиздат. 1979 — 212 с.
  7. Чиркин В. С. Теплофизические свойства материалов ядерной техники. Справочник.

Плотность кирпичей

Для определения теплопроводности и прочности кирпичной кладки следует знать плотность кирпича. Такая физико-техническая характеристика отражает массу материала в единице объема. Показатель является переменным из-за гигроскопичной поверхности изделия, поэтому для расчетов используют значение сухой массы. Плотность строительного материала подбирают исходя из предназначения возводимого сооружения.

Факторы, влияющие на плотность

Существует несколько причин, определяющих характеристику изделия:

  • Влага. Ее основной объем вбирается материалом на этапе кладки. Степень влажности определяется паровой проницаемостью. Легче пропускается воздух тем строительным изделием, в котором влага не задерживается. Для строительства подвальных помещений используют удерживающий влагу кирпич.
  • Наличие трещин. Они обязательно присутствуют в материалах из глины. При этом современные разработки смесей позволяют их избежать, увеличивая плотность.
  • Виды исходного материала. Сырье, из которого изготавливается изделие (глина, песок), отличается по массе на единицу объема из-за места добычи.

Вернуться к оглавлению

Средняя плотность

Такую характеристику применяют для определения пористости и теплопроводности изделия. Чем меньше его плотность, тем ниже уровень теплопроводности. Индивидуальный показатель рассчитывается в лабораторных условиях. Средняя плотность определяется по формуле: p=m/v, где m — масса, v — объем, единицы ее измерения — кг/м3. Этапы расчета такой характеристики включают:

Читайте также:  Как покрыть старую крышу профнастилом

Виды кирпича и их плотность

Физико-технические характеристики внешне похожих материалов определяются свойствами сырья, из которого они изготовлены. Разные виды строительных камней отличаются по стоимости производства и устойчивости к воздействию внешней среды. Выбор материалов широк, но прежде всего необходимо сопоставить требования к будущей конструкции и надежность кирпича.

Плотность керамического кирпича

Производится из глины. Керамический кирпич отличается по значению массы в зависимости от места изготовления. Применяется для несущих, внешних и внутренних стен. Вес керамического облицовочного экземпляра будет больше за счет укрепления поверхности, его быстро обжигают при высокой температуре. В результате изменяется уровень паропроницаемости, поэтому в жилых домах из таких материалов должна быть хорошая вентиляция. Плотность керамического кирпича:

  • пустотелого — до 1400 кг/м3;
  • полнотелого — до 2000 кг/м3.

Вернуться к оглавлению

Клинкерный

Разновидность керамического вида. Производят из красной глины, обжигая ее при высоких температурах. Применяется в строительстве дорог, отделке цоколей и фасадов. Высокий уровень устойчивости к перепадам температур и воздействию повышенной влажности. Плотность достигает значения 2100 кг/м3, из-за чего такому материалу характерен большой показатель теплопроводности. Он относительно дорогой.

Особенности шамотного кирпича

Его делают из огнестойкой глины. Изготовляют материалы разного цвета и формы. Отличительное свойство — устойчивость к воздействию температуры до 1600 °C. Незаменим для строительства огнеупорных конструкций: печек, каминов. Огнеупорный камень применяется на производстве. Часто используют как элемент декора. Плотность шамотного кирпича достигает значения 1900 кг/м3.

Плотность силикатного кирпича

В состав такого изделия входит песок, известь, небольшое количество добавок. Он производится под давлением автоклавного пресса. Марка прочности варьируется от М 125 до М 150, что свидетельствует о низком показателе. Он обладает высокой теплопроводностью, поэтому не рекомендуется такое изделие для строительства несущих конструкций или внешних стен. Его применяют для возведения внутренних стен и перегородок, он относительно доступный. Обыкновенный полнотелый материал имеет плотность до 1950 кг/м3, пустотелый — 1600 кг/м3.

Силикатный кирпич уступает керамическому по водостойкости.

Плотность полнотелого кирпича

Производится путем обжигания глины. Глазурованный частично с целью обеспечения паропроницаемости. Характерна большая прочность и устойчивость к воздействию низких температур. Полнотелый кирпич обладает высокой теплопроводностью. Используют для кладки стен, опорных сооружений. Плотность обыкновенного полнотелого кирпича достигает 1600 кг/м3, значение показателя для красного кирпича составляет 2100 кг/м3.

Пустотелый

Пустоты могут составлять половину объема изделия, из-за чего значительно уменьшается его объемный вес. Для материала характерен невысокий уровень прочности и небольшая теплопроводность. Плотность кладки из пустотелого кирпича — 1450 кг/м3. Его применяют для строительства легких внешних стен и перегородок. Часто используется при возведении жилых домов, поскольку нет необходимости в добавочном утеплении.

Облицовочный

Лицевой камень применяют для внешней отделки фасадов. Кирпич пустотелый с высоким уровнем звукоизоляции. Из-за гладкой блестящей поверхности похож на плитку. Яркий эффект обеспечивает наличие разнообразной палитры цветов, которые получаются в результате смешивания разной глины и изменения условий обжига. Обладает небольшой теплопроводностью и влагостойкостью. Плотность кирпича составляет до 1450 кг/м3.

Заключение

Тип кирпича подбирается под требования к возводимой конструкции. На каждом этапе строительства учитывают технические характеристики материалов. Показатель плотности не должен быть большой, если речь идет об утеплении сооружения. Но показатель нужен высокий, когда важно обеспечить прочность здания или повысить уровень огнеупорности. Важно учитывать метод кладки и распределение нагрузки.

Коэффициенты морозостойкости, теплоемкости и теплопроводности кирпича

Сфера применения материала определяется его эксплуатационными характеристиками. Комплекс рассматриваемых свойств должны соответствовать требованиям, предъявляемых строительному кирпичу при сооружении внешних стен, перекрытий, фундамента. Возведение конструкций подразумевает выбор изделий различного назначения:

  • Силикатный – рядовой, лицевой, пустотелый, полнотелый.
  • Керамический – жаростойкий и все разновидности предыдущего вида.
  • Клинкерный – для облицовки фасадов.

Показатели определяют энергопотребление дома, затраты на обогрев помещений. Проектирование сооружений, расчеты ограждающих конструкций учитывают эти параметры.

Коэффициент теплопроводности

Материалы обладают свойством проводить тепло от нагретой поверхности в более холодную область. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Основной показатель величины – коэффициент теплопроводности (λ, Вт/), определяемый как количество теплоты, проходящее через единицу площади сечения за единичный интервал времени. Малое значение положительно влияет на сохранение теплового режима.

Согласно ГОСТ 530-2012 эффективность кладки в сухом состоянии характеризуется коэффициентом теплопроводности:

  • ≤ 0.20 – высокая;
  • 0.2 Теплоемкость

Необходимое количество тепла, подведенного к телу для увеличения температуры на 1 Кельвин – определение понятия «полная теплоемкость». Единица измерения: Дж/К или Дж/°C. Чем больше объем и масса тела (толщина стен и перекрытий), тем выше теплоемкость материала, лучше поддерживается благоприятный температурный режим. Наиболее точно это свойство подтверждают характеристики:

  • Удельная теплоемкость кирпича – количество тепла, необходимое для нагрева единичной массы вещества за единичный интервал времени. Единица измерения: Дж/кг*К или Дж/кг*°C. Используется для инженерных расчетов.
  • Объемная теплоемкость – количество тепла, потребляемое телом единичного объема для нагрева за единицу времени. Измеряется в Дж/м³*К или Дж/кг*°C.
Вид изделияУдельная теплоемкость, Дж/кг*°С
Красный полнотелый880
пустотелый840
Силикатный полнотелый840
пустотелый750

Тепловая конвекция непрерывна: радиаторы нагревают воздух, который передает тепло стенам. При понижении температуры в помещениях происходит обратный процесс. Увеличение удельной теплоемкости, снижение коэффициента теплопроводности стен обеспечивают сокращение затрат на обогрев дома. Толщина кладки может быть оптимизирована рядом действий:

  • Применение теплоизоляции.
  • Нанесение штукатурки.
  • Использование пустотного кирпича или камня (исключено для фундамента здания).
  • Кладочный раствор с оптимальными теплотехническими параметрами.

Таблица с характеристиками различных видов кладок. Использованы данные СП 50.13330.2012:

Обыкновенный г линяный кирпич на различном кладочном растворе

Пустотный красный различной плотности (кг/м³) на ЦПС

Плотность, кг/м³Удельная теплоемкость, кДж/кг*°СКоэффициент теплопроводности, Вт/м*°C
Цементно-песчаный18000.880.56
Цементно-перлитовый16000.880.47
Цементно-песчаный18000.880.7
140016000.880.47
130014000.880.41
100012000.880.35

Морозостойкость кирпичной кладки

Устойчивость к воздействию отрицательных температур – показатель, влияющий на прочность и долговечность конструкции. Кладка в процессе эксплуатации насыщается влагой. В зимний период вода, проникая в поры, превращается в лед, увеличивается в объеме и разрывает полость, в которой находится – происходит разрушение. Морозоустойчивость, как правило, низкая, водопоглощение не должно превышать 20 %.

Определение количества циклов замораживания и оттаивания без потери прочности каждого вида изделия позволяет выявить морозоустойчивость (F). Значение получают опытным путем. В лаборатории проводят многократную заморозку в холодильных камерах и естественное оттаивание образцов.

Коэффициент морозостойкости – отношение прочности на сжатие опытного и исходного элемента. Изменение показателя более 5 %, наличие трещин, отколов сигнализируют об окончании испытаний. Марки изделий содержат характеристики по морозостойкости: F15 (20, 25, 35, 50, 75, 100, 150). Цифровой параметр указывает на количество циклов: чем выше число, тем надежнее возводимая система.

Приобретение кирпича высокой марки морозостойкости опустошит бюджет, заложенный на строительство. Меры по улучшению свойств конструкций, продлению срока эксплуатации в зонах холодного климата без увеличения расходов:

  • Применение паро- и гидроизоляции.
  • Обработка кладки гидрофобными составами.
  • Контроль, своевременное исправление дефектов.
  • Надежная гидроизоляция фундамента.

От выбора материала для кладки, его удельной теплоемкости, теплопроводности, морозостойкости зависит срок и комфорт эксплуатации дома. Сложные расчеты, составление сметы расходов лучше доверить опытным специалистам, имеющим опыт в строительстве и проектировании.

Плотность кирпичей

Для определения теплопроводности и прочности кирпичной кладки следует знать плотность кирпича. Такая физико-техническая характеристика отражает массу материала в единице объема. Показатель является переменным из-за гигроскопичной поверхности изделия, поэтому для расчетов используют значение сухой массы. Плотность строительного материала подбирают исходя из предназначения возводимого сооружения.

Факторы, влияющие на плотность

Существует несколько причин, определяющих характеристику изделия:

  • Влага. Ее основной объем вбирается материалом на этапе кладки. Степень влажности определяется паровой проницаемостью. Легче пропускается воздух тем строительным изделием, в котором влага не задерживается. Для строительства подвальных помещений используют удерживающий влагу кирпич.
  • Наличие трещин. Они обязательно присутствуют в материалах из глины. При этом современные разработки смесей позволяют их избежать, увеличивая плотность.
  • Виды исходного материала. Сырье, из которого изготавливается изделие (глина, песок), отличается по массе на единицу объема из-за места добычи.

Вернуться к оглавлению

Средняя плотность

Такую характеристику применяют для определения пористости и теплопроводности изделия. Чем меньше его плотность, тем ниже уровень теплопроводности. Индивидуальный показатель рассчитывается в лабораторных условиях. Средняя плотность определяется по формуле: p=m/v, где m — масса, v — объем, единицы ее измерения — кг/м3. Этапы расчета такой характеристики включают:

Виды кирпича и их плотность

Физико-технические характеристики внешне похожих материалов определяются свойствами сырья, из которого они изготовлены. Разные виды строительных камней отличаются по стоимости производства и устойчивости к воздействию внешней среды. Выбор материалов широк, но прежде всего необходимо сопоставить требования к будущей конструкции и надежность кирпича.

Плотность керамического кирпича

Производится из глины. Керамический кирпич отличается по значению массы в зависимости от места изготовления. Применяется для несущих, внешних и внутренних стен. Вес керамического облицовочного экземпляра будет больше за счет укрепления поверхности, его быстро обжигают при высокой температуре. В результате изменяется уровень паропроницаемости, поэтому в жилых домах из таких материалов должна быть хорошая вентиляция. Плотность керамического кирпича:

  • пустотелого — до 1400 кг/м3;
  • полнотелого — до 2000 кг/м3.

Вернуться к оглавлению

Клинкерный

Разновидность керамического вида. Производят из красной глины, обжигая ее при высоких температурах. Применяется в строительстве дорог, отделке цоколей и фасадов. Высокий уровень устойчивости к перепадам температур и воздействию повышенной влажности. Плотность достигает значения 2100 кг/м3, из-за чего такому материалу характерен большой показатель теплопроводности. Он относительно дорогой.

Особенности шамотного кирпича

Его делают из огнестойкой глины. Изготовляют материалы разного цвета и формы. Отличительное свойство — устойчивость к воздействию температуры до 1600 °C. Незаменим для строительства огнеупорных конструкций: печек, каминов. Огнеупорный камень применяется на производстве. Часто используют как элемент декора. Плотность шамотного кирпича достигает значения 1900 кг/м3.

Плотность силикатного кирпича

В состав такого изделия входит песок, известь, небольшое количество добавок. Он производится под давлением автоклавного пресса. Марка прочности варьируется от М 125 до М 150, что свидетельствует о низком показателе. Он обладает высокой теплопроводностью, поэтому не рекомендуется такое изделие для строительства несущих конструкций или внешних стен. Его применяют для возведения внутренних стен и перегородок, он относительно доступный. Обыкновенный полнотелый материал имеет плотность до 1950 кг/м3, пустотелый — 1600 кг/м3.

Силикатный кирпич уступает керамическому по водостойкости.

Плотность полнотелого кирпича

Производится путем обжигания глины. Глазурованный частично с целью обеспечения паропроницаемости. Характерна большая прочность и устойчивость к воздействию низких температур. Полнотелый кирпич обладает высокой теплопроводностью. Используют для кладки стен, опорных сооружений. Плотность обыкновенного полнотелого кирпича достигает 1600 кг/м3, значение показателя для красного кирпича составляет 2100 кг/м3.

Пустотелый

Пустоты могут составлять половину объема изделия, из-за чего значительно уменьшается его объемный вес. Для материала характерен невысокий уровень прочности и небольшая теплопроводность. Плотность кладки из пустотелого кирпича — 1450 кг/м3. Его применяют для строительства легких внешних стен и перегородок. Часто используется при возведении жилых домов, поскольку нет необходимости в добавочном утеплении.

Облицовочный

Лицевой камень применяют для внешней отделки фасадов. Кирпич пустотелый с высоким уровнем звукоизоляции. Из-за гладкой блестящей поверхности похож на плитку. Яркий эффект обеспечивает наличие разнообразной палитры цветов, которые получаются в результате смешивания разной глины и изменения условий обжига. Обладает небольшой теплопроводностью и влагостойкостью. Плотность кирпича составляет до 1450 кг/м3.

Заключение

Тип кирпича подбирается под требования к возводимой конструкции. На каждом этапе строительства учитывают технические характеристики материалов. Показатель плотности не должен быть большой, если речь идет об утеплении сооружения. Но показатель нужен высокий, когда важно обеспечить прочность здания или повысить уровень огнеупорности. Важно учитывать метод кладки и распределение нагрузки.

Ссылка на основную публикацию
Adblock
detector